
TACT Boot Camp

Sample Problems for Algorithms

1 Resources

Following is a list of publicly available resources used in much of the content presented during the
lectures and in the exercises of the next sections.

1. “A Gentle Introduction to Algorithm Cmplexity Analysis”: http://discrete.gr/complexity/

2. Algorithm analysis and complexity: http://cs.lmu.edu/~ray/notes/alganalysis/

3. Algorithms course lectures: http://www3.cs.stonybrook.edu/~algorith/video-lectures/

4. Greedy algorithms: https://en.wikipedia.org/wiki/Greedy_algorithm

5. Sorting: https://www.cpp.edu/~ftang/courses/CS241/notes/sorting.htm

6. Sorting algorithms overview: https://en.wikipedia.org/wiki/Sorting_algorithm

7. Several exercises from Sections 3 and 4 were taken from the following https://www.cs.

auckland.ac.nz/courses/compsci220s1t/lectures/lecturenotes/GG-lectures/220exercises1.

pdf

2 Algorithm Design

For each of the following, write an algorithm in pseudocode or in your favorite programming
language to perform the function described.

Exercise 2.1. (Summing arrays) Write a function which takes as arguments two arrays of integers,
both assumed to be the same length, and an integer specifying their lengths, and returns the first
array modified so that each element is the sum of the corresponding elements of the two array (i.e.
A[0] = A[0] + B[0], A[1] = A[1] + B[1], etc.).

Example Solution:

int arraySum (A, B, n) {
for (int i = 0 ; i < n ; i++) {

A[i] = A[i] + B[i] ;
}
return A;

}

Exercise 2.2. (Counting matches) Write a function which takes as arguments two arrays of inte-
gers, both assumed to be the same length, and an integer specifying their lengths, and returns the
sum total of the number of times that elements of the first array occur in the second. E.g., if the
input arrays were {1, 4, 7, 2, 5} and {5, 10, 4, 5, 8}, the function would return 3.

1

http://discrete.gr/complexity/
http://cs.lmu.edu/~ray/notes/alganalysis/
http://www3.cs.stonybrook.edu/~algorith/video-lectures/
https://en.wikipedia.org/wiki/Greedy_algorithm
https://www.cpp.edu/~ftang/courses/CS241/notes/sorting.htm
https://en.wikipedia.org/wiki/Sorting_algorithm
https://www.cs.auckland.ac.nz/courses/compsci220s1t/lectures/lecturenotes/GG-lectures/220exercises1.pdf
https://www.cs.auckland.ac.nz/courses/compsci220s1t/lectures/lecturenotes/GG-lectures/220exercises1.pdf
https://www.cs.auckland.ac.nz/courses/compsci220s1t/lectures/lecturenotes/GG-lectures/220exercises1.pdf

Example Solution:

int countingMatches (A, B, n) {
int matches = 0 ;
for (int i =0; i<n ; i++) {

for (int j =0; j<n ; j++) {
i f (A[i] == B[j]) {

matches = matches + 1 ;
}

}
}
return matches ;

}

Exercise 2.3. (Linear search) Write a function which takes as arguments an array of integers,
an integer specifying its length, and an integer value to be searched for in the array. The function
should return −1 if the search value is not found in the array, otherwise it should return the integer
specifying the first index that that value is found in the array (e.g. if the search value is 7 and the
3rd element of the array, that is A[2], is 7, it should return 2).

Example Solution:

int l i n e a r S e a r c h (A, n , s) {
for (int i = 0 ; i < n ; i++) {

i f (A[i] == s) {
return i ;

}
return −1;

}

Exercise 2.4. (Binary search) Write a function which takes as input an array of integers which
can be assumed to be sorted in increasing order, as well as two integers specifying the beginning
and end indices to search, and an integer specifying a value to be searched for. It should return
the index in the array at which the search value is found (if it is found), and −1 if it is not. This
function should use recursion, and if the first call to it is with start index value 0 and end index
value n− 1 (where n is the length of the array), it should complete in time O(log n).

Example Solution:

int binarySearch (A, begin , end , s) {
i f (A[begin] == s) {

return begin ;
} else i f (begin == end) {

return −1;
}

int middle = begin + (end−begin) / 2 ;
i f (A[middle] == s) {

return middle ;
} else i f (A[middle] > s) {

return binarySearch (A, begin , middle , s) ;

2

} else {
return binarySearch (A, middle , end , s) ;

}
}

Exercise 2.5. (Fibonacci numbers) Write a function which takes as an argument a non-negative
integer n and returns the nth Fibonacci number. It should use recursion.

The Fibonacci series is defined as follows:

fib(n) =

0 if n = 0

1 if n = 1

fib(n− 1) + fib(n− 2) otherwise

Example Solution:

int f i b o n a c c i (n) {
i f (n == 0) return 0 ;
i f (n == 1) return 1 ;
return f i b o n a c c i (n−1) + f i b o n a c c i (n−2);

}

3 Big-O Notation

Exercise 3.1. For each of the expressions below, select the dominant term having the steepest in-
crease in n and specify the lowest Big-O complexity of each expression.

Solution:

3

Expression Dominant term(s) O(. . .)

10n2 + 20n + 100 10n2 O(n2)

5 + 0.001n3 + 0.025n 0.001n3 O(n3)

500n + 100n1.5 + 50n log10 n 100n1.5 O(n1.5)

0.3n + 5n1.5 + 2.5n1.75 2.5n1.75 O(n1.75)

n2 log2 n + n(log2 n)2 n2 log2 n O(n2 log n)

n log3 n + n log2 n n log3 n, n log2 n O(n log n)

3 log8 n + log2 log2 log2 n 3 log8 n O(log n)

100n + 0.01n2 0.01n2 O(n2)

0.01n + 100n2 100n2 O(n2)

2n + n0.5 + 0.5n1.25 0.5n1.25 O(n1.25)

0.01n log2 n + n(log2 n)2 n(log2 n)2 O(n(log n)2)

100n log3 n + n3 + 100n n3 O(n3)

0.003 log4 n + log2 log2 n 0.003 log4 n O(log n)

4 Time Complexity of Code

For each of the following pieces of code, determine the time complexity.

Exercise 4.1. Determine the time complexity of the following piece of code:

i f (i < n) {
. . . // cons tant number o f o p e r a t i o n s
i f (k > i) {

. . . // cons tant number o f o p e r a t i o n s
}

}

Solution: In the worst case, all code is executed, but since there are no loops, there are only
a constant number of operations in total and the code executes in O(1) constant time.

Exercise 4.2. Determine the time complexity of the following piece of code:

4

for (int i = n ; i > 0 ; i = i / 2) {
for (int j = 1 ; j < n ; j = j ∗ 2) {

for (int k = 0 ; k < n ; k = k + 2) {
. . . // cons tant number o f o p e r a t i o n s

}
}

}

Solution: In the outer for-loop, the variable i keeps halving so it goes round log2 n times.
For each i, the next loop goes round also log2 n times, because of doubling the variable j. The
innermost loop by k goes round n/2 times. Loops are nested, so the bounds may be multiplied to
give that the algorithm is O(n(log n)2).

Exercise 4.3. Determine the time complexity of the following piece of code:

for (i =1; i < n ; i = i ∗ 2) {
for (j = n ; j > 0 ; j = j / 2) {

for (k = j ; k < n ; k = k + 2) {
sum += (i + j ∗ k) ;

}
}

}

Solution: Running time of the inner, middle, and outer loops are proportional to n, log n, and
log n, respectively. Thus the overall complexity is O(n(logn)2).

Exercise 4.4. Determine the time complexity of the following piece of code assuming that n = 2m:

for (int i = n ; i > 0 ; i = i − 1) {
for (int j = 1 ; j < n ; j = j ∗ 2) {

for (int k = 0 ; k < j ; k++) {
. . . // cons tant number C o f o p e r a t i o n s

}
}

}

Solution: The outer for-loop goes round n times. For each i, the next loop goes round
m = log2 n times, because of doubling the variable j. For each j, the innermost loop by k goes
round j times, so that the two inner loops together go round 1 + 2 + 4 + . . . + 2m1 = 2m − 1 ≈ n
times. Loops are nested, so the bounds may be multiplied to give that the algorithm is O(n2).

Exercise 4.5. Determine the time complexity of the following piece of code:

for (int bound = 1 ; bound <= n ; bound = bound ∗ 2) {
for (int i = 0 ; i < bound ; i++) {

for (int j = 0 ; j < n ; j = j + 2) {
. . . // cons tant number o f o p e r a t i o n s

5

}
for (int j = 1 ; j < n ; j = j ∗ 2) {

. . . // cons tant number o f o p e r a t i o n s
}

}
}

Solution: The first and second successive innermost loops have O(n) and O(log n) complexity,
respectively. Thus, the overall complexity of the innermost part is O(n). The outermost and
middle loops have complexity O(log n) and O(n), so a straightforward (and valid) solution is that
the overall complexity is O(n2 log n).

Exercise 4.6. Assume that the array a contains n values, that the method randomValue takes
a constant number c of computational steps to produce each output value, and that the method
goodSort takes n log n computational steps to sort the array. Determine the time complexity for the
following fragments of code:

for (i = 0 ; i < n ; i++) {
for (j = 0 ; j < n ; j++) {

a [j] = randomValue (i) ;
}
goodSort (a) ;

}

Solution: The inner loop has linear complexity cn, but the next called method is of higher
complexity n log n. Because the outer loop is linear in n, the overall complexity of this piece of
code is n2 log n.

5 Greedy Algorithms

Recall that a greedy algorithm is one which, at each step while determining a solution, selects the
move that appears to be the “best” (by some measure). It does this without regard for future
consequences of that selection, in the hope that by choosing a local optimum at each step, a global
optimum (or close enough) will be discovered. Greedy algorithms are typically used for problems
for which it is too computationally difficult to calculate the globally (overall) best solutions.

Exercise 5.1. Given the following list of durations for a set of tasks to be scheduled on a group
of 3 computers, use a greedy algorithm to assign the tasks to the computers. The greedy algorithm
should always assign the longest unassigned task to the computer which has had tasks summing to
the smallest total time assigned to it.

Tasks durations: 22, 21, 19, 18, 14, 13, 9, 4

Example Solution:

1. Computer 1: 22, 13, 9 (Total: 44)

2. Computer 2: 21, 14, 4 (Total: 39)

3. Computer 3: 19, 18 (Total: 37)

6

Figure 1: A map showing roads (red lines) between towns (black circles). The length of each road
is given, along with the coordinates of each town.

Exercise 5.2. Show that there is a better solution to Exercise 5.1 than the one found using the
greedy algorithm.

Example Solution:

1. Computer 1: 22, 14, 4 (Total: 40)

2. Computer 2: 21, 19 (Total: 40)

3. Computer 3: 18, 13, 9 (Total: 40)

This is a better solution because the overall running time is only 40 minutes, while the greedy
algorithm results in a total time of 44 minutes.

Exercise 5.3. Develop a greedy algorithm for the following task: Given a road map and a starting
location, attempt to find a short(est) route to a given destination.

Example Solution: At each current position, select a road segment leading away from the
current point which (1) has not been previously taken, and (2) leads to a point which is closest (as
the crow flies) to the destination. If there are no such points, then backtrack by following the road
which returns you closest to the starting location along the path(s) already taken, and continue.

Exercise 5.4. Apply your greedy algorithm to the map in Figure 1 to attempt to find a short(est)
path between the towns at (0, 3) and (10, 5) and its length.

Example Solution: Figure 2 shows the route found by the greedy algorithm presented as an
example solution to Exercise 5.3 in blue (whose length is 21.25). (It also shows the optimal route,
whose length is 13.97, in green.)

7

Figure 2: The map of Figure 1 showing the route found by the greedy algorithm of the example
solution in blue (length = 21.25), and the optimal route in green (length = 13.97).

6 Sorting Algorithms

Exercise 6.1. Give the average and worst case time complexities for each sorting algorithm, as
well as the amount of additional memory required (beyond that needed for the input).

Solution:

Name Average Worst Memory

Bubble sort O(n2) O(n2) O(1)

Selection sort O(n2) O(n2) O(1)

Insertion sort O(n2) O(n2) O(1)

Merge sort O(n log n) O(n log n) O(n)

Quicksort O(n log n) O(n2) O(1)

Heapsort O(n log n) O(n log n) O(1)

6.1 Bubble sort

The following is an implementation of bubble sort:

8

void bubbleSort (int array [] , n) {
for (int c = 0 ; c < (n − 1) ; c++) {

for (int d = 0 ; d < n − c − 1 ; d++) {
i f (array [d] > array [d+1]) /∗ For d e c r e a s i n g order use < ∗/ {

int swap = array [d] ;
array [d] = array [d+1] ;
array [d+1] = swap ;

}
}

}
}

Exercise 6.2. Demonstrate the changes made by each swap operation of bubble sort when performed
on the following array: 7 5 4 2 3

Solution:

7 5 4 2 3

5 7 4 2 3

5 4 7 2 3

5 4 2 7 3

5 4 2 3 7

5 4 2 3 7

4 5 2 3 7

4 2 5 3 7

4 2 3 5 7

4 2 3 5 7

2 4 3 5 7

2 3 4 5 7

2 3 4 5 7

2 3 4 5 7

6.2 Selection sort

The following is an implementation of selection sort:

void s e l e c t S o r t (int ar r [] , int n) {
// pos min i s s h o r t f o r p o s i t i o n o f min
int pos min , temp ;

for (int i =0; i < n−1; i++) {
pos min = i ; // s e t pos min to the curren t index o f array

for (int j=i +1; j < n ; j++) {

i f (a r r [j] < ar r [pos min]) {
pos min = j ;
// pos min w i l l keep t r a c k o f the index t h a t

9

// min i s in , t h i s i s needed when a swap happens
}
}

// i f pos min no l o n g e r e q u a l s i than a s m a l l e r v a l u e must
// have been found , so a swap must occur
i f (pos min != i) {

temp = arr [i] ;
a r r [i] = ar r [pos min] ;
a r r [pos min] = temp ;

}
}

}

Exercise 6.3. Demonstrate the minimum valued elements found during each iteration and the
changes made by each swap operation of selection sort when performed on the following array:

7 5 4 2 3

Solution:

7 5 4 2 3

2 5 4 7 3

2 5 4 7 3

2 3 4 7 5

2 3 4 7 5

2 3 4 7 5

2 3 4 5 7

2 3 4 5 7

6.3 Insertion sort

The following is an implementation of insertion sort:

void i n s e r t i o n s o r t (int ar r [] , int l ength) {
int j , temp ;

for (int i = 1 ; i < l ength ; i++) {
j = i ;

while (j > 0 && arr [j] < ar r [j −1]){
temp = arr [j] ;
a r r [j] = ar r [j −1] ;
a r r [j −1] = temp ;
j−−;

}
}

}

10

Exercise 6.4. Demonstrate the changes made by each swap operation of insertion sort when per-
formed on the following array: 7 5 4 2 3

Solution:

7 5 4 2 3

5 7 4 2 3

5 7 4 2 3

5 4 7 2 3

5 4 7 2 3

4 5 7 2 3

4 5 7 2 3

4 5 2 7 3

4 5 2 7 3

4 2 5 7 3

4 2 5 7 3

2 4 5 7 3

2 4 5 7 3

2 4 5 3 7

2 4 5 3 7

2 4 3 5 7

2 4 3 5 7

2 3 4 5 7

6.4 Merge sort

The following is high-level pseudocode for an implementation of merge sort:

MergeSort (a r r [] , l , r)
I f r > l

1 . Find the middle po int to d iv id e the array in to two ha lve s :
middle m = (l+r)/2

2 . Ca l l mergeSort for f i r s t h a l f :
Ca l l mergeSort (arr , l , m)

3 . Ca l l mergeSort for second h a l f :
Ca l l mergeSort (arr , m+1, r)

4 . Merge the two ha lve s so r t ed in s tep 2 and 3 :
Ca l l merge (arr , l , m, r)

Exercise 6.5. Demonstrate how the array is first split apart, and then how it is merged when merge
sort when performed on the following array: 8 5 7 2 6 1 4 9 3

Solution: (See Figure 3)

11

(a) (b)

Figure 3: (a) Splitting the array in merge sort, (b) Merging the subarrays back together

6.5 Quicksort

The following is an implementation of quicksort:

/∗ This f u n c t i o n t a k e s l a s t e lement as p ivo t , p l a c e s
the p i v o t e lement at i t s c o r r e c t p o s i t i o n in s o r t e d

array , and p l a c e s a l l s m a l l e r (s m a l l e r than p i v o t)
to l e f t o f p i v o t and a l l g r e a t e r e lements to r i g h t
o f p i v o t ∗/

int p a r t i t i o n (int ar r [] , int low , int high) {
int pivot = ar r [high] ; // p i v o t
int i = (low − 1) ; // Index o f s m a l l e r e lement

for (int j = low ; j <= high− 1 ; j++) {
// I f curren t e lement i s s m a l l e r than or
// e q u a l to p i v o t
i f (a r r [j] <= pivot)
{

i ++; // increment index o f s m a l l e r e lement
swap(& arr [i] , &ar r [j]) ;

}
}
swap(& arr [i + 1] , &ar r [high]) ;
return (i + 1) ;

}

/∗ The main f u n c t i o n t h a t implements QuickSort
arr [] −−> Array to be sor ted ,

low −−> S t a r t i n g index ,
h igh −−> Ending index ∗/

void qu ickSort (int ar r [] , int low , int high) {
i f (low < high) {

/∗ p i i s p a r t i t i o n i n g index , arr [p] i s now
at r i g h t p l a c e ∗/

int pi = p a r t i t i o n (arr , low , high) ;

12

// S e p a r a t e l y s o r t e lements b e f o r e
// p a r t i t i o n and a f t e r p a r t i t i o n
qu ickSort (arr , low , p i − 1) ;
qu ickSort (arr , p i + 1 , high) ;

}
}

Exercise 6.6. Demonstrate how the array is sorted by showing which elements are selected as
pivot elements, how the subarrays are sorted with respect to those pivot elements, and how the
process is applied again to each subarray when quick sort when performed on the following array:

8 5 7 2 6 1 4 9 3

Solution: (See Figure 4)

Figure 4: From top to bottom, how the pivot elements (in grey) are selected, then the elements less
(greater) than that are placed in the left (right) subarrary, then the process is repeated on each
half.

6.6 Heapsort

The following is high-level pseudocode for an implementation of heapsort:

heap i fy the array ;
while the array i s not empty {

remove and r e p l a c e the root ;
reheap the new root node ;

}

We will first determine how to heapify the array 8 5 7 2 6 1 4 9 3 , and then we
will demonstrate the process for removing and reheaping.

6.6.1 Heapify

High-level pseudocode for heapify:

for each element in the array {
add the element as a new node in a binary t r e e :

i f the deepest l e v e l i s f u l l : as the l e f t m o s t l e a f o f a new l e v e l
else : immediately r i g h t o f the r ightmost l e a f o f the bottom l e v e l

currNode = newly added l e a f

13

while currNode value i s g r e a t e r than i t s parent va lue {
s i f tUp (to s i f tUp , we swap the va lue s o f currNode and i t s parent)
currNode = parent

}
}

Exercise 6.7. Demonstrate how heapify is performed on the following array: 8 5 7 2 6 1 4 9 3
Figure 5 shows the first 5 node additions of heapify, until a call to siftUp if required. Demonstrate
the results of that, as well as the rest of the node additions and any necessary siftUp operations
along the way.

Figure 5: From left to right, the first 5 node additions when building a heap from the given array,
but before siftUp is performed.

Solution: (See Figure 6)

Figure 6: Completion of heapify on the given array. From left to right, the result of applying
siftUp (nodes in grey had values swapped) and remaining node additions and additional necessary
calls to siftUp

6.6.2 Remove nodes and reheap

To complete the sorting of the array after forming a heap we perform the following:

while the array i s not empty {
remove and r e p l a c e the root ;
reheap (root) ;

}

Recall that removing a node always consists of removing the root, and then we replace it with
the rightmost leaf of the bottom level. The reheap operation is essentially the opposite of siftUp:

reheap (currNode) {
while value o f currNode i s l e s s than one o f i t s c h i l d r e n {

swap the va lue s o f currNode and i t s l a r g e s t c h i l d
currNode = node o f swapped c h i l d

14

}
}

Exercise 6.8. Figure 7 shows the initial heap before any node removals, and then the removal
of the root. Demonstrate how that node is replaced, and then all necessary reheap operations to
produce the new heap.

Figure 7: Initial heap, then with root removed

Solution: (See Figure 8)

Figure 8: Replacement of root node, followed by all necessary reheap operations

15

	Resources
	Algorithm Design
	Big-O Notation
	Time Complexity of Code
	Greedy Algorithms
	Sorting Algorithms
	Bubble sort
	Selection sort
	Insertion sort
	Merge sort
	Quicksort
	Heapsort
	Heapify
	Remove nodes and reheap

